
Naval Research Laboratory
Washington, DC 20375-5320

NRL/FR/5510--95-9777

Extending the User Action Notation (UAN)
for Specifying Interfaces with Multiple
Input Devices and Parallel Path Structure

LYNN A. DIEVENDORF, JR.

DEREK P. BROCK, JR.

Human Computer Interaction Laboratory
Naval Center for Applied Research in Artificial Intelligence
Information Technology Division

ROBERT J. K. JACOB

Tufts University
Medford, Massachusetts

May 12, 1995

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE FormN Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
coliection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 12, 1995

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PE - 0601153N
Extending the User Action Notation (UAN) for Specifying Interfaces with TA - R5391
Multiple Input Devices and Parallel Path Structure SC - 019501

6. AUTHOR(S)

Lynn A. Dievendorf Jr., Derek P. Brock Jr., and Robert J.K. Jacob*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ESI 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5320 NRL/FR/5510-95-9777

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

*Tufts University, Medford, Massachusetts

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Many modern computer applications provide the user with a choice of several different methods of completing the same
task. These options are afforded the user by the implementation of multiple input devices (e.g., a mouse and a keyboard) and
keyboard shortcuts, or hot-keys, into the interface. Although these options can be described by current interface specification
methods, there is a need for a notation that can clearly represent this type of interface design in a meaningful format. A survey
of formal specification methods was conducted in an attempt to identify a method which captured these elements of the human-
computer interface. The User Action Notation (UAN) shows promise for illustrating these options and providing an analytical
tool for interfaces with this type of parallel structure. A graphing task from a DOS application called SigmaPloti is then

specified in UAN. During this process, structural modifications to the standard UAN format are made, and new symbols are
added to the existing repertoire in an effort to augment the notation's analytical strengths. The modifications prove to clarify the
specification of interfaces with multiple input devices and allow the reader of the specification to make meaningful comparisons
of alternative methods for completing a specified task. These modifications are documented, and their benefits are discussed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Specification methods Human-computer interaction 38
User action notation Usability 16. PRICE CODE

Interface design

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

i

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

298-102

CONTENTS

1. INTRODUCTION ... 1

2. SURVEY OF FORMAL INTERFACE SPECIFICATION TECHNIQUES 2

2.1 Introduction .. 2

2.1.1 Sequential vs. Asynchronous Interaction .. 2
2.1.2 Constructional vs. Behavioral Models ... 2
2.1.3 Qualities of a Good User Interface Specification .. 3

2.2 Constructional Techniques .. 3

2.2.1 Backus-Naur Form (BNF) .. 3
2.2.2 State Transition Diagrams .. 4
2.2.3 Statecharts 5...............5
2.2.4 Object Oriented Approach .. 6
2.2.5 Event Handlers .. 7
2.2.6 Multilayered Method .. 7
2.2.7 Interaction by Demonstration: PERIDOT ... 7
2.2.8 User Interface Development Environment (UIDE) ... 8
2.2.9 Graphical Control Specification Systems: Panther .. 8

2.3 Behavioral Techniques .. 9

2.3.1 Goals Operators Methods & Selection Rules (GOMS) 9
2.3.2 Keystroke-Level Model .. 9
2.3.3 Command Language Grammar (CLG) ... 10
2.3.4 Task Action Grammar (TAG) ... 10
2.3.5 User Action Notation (UAN) ... 11

3. THE USER ACTION NOTATION ... 11

4. MODIFICATIONS TO THE UAN ... 13

4.1 Dividing the User Actions Column ... 13
4.2 Hot-Key Specification ... 15
4.3 Individual Input Actions ... 16
4.4 Additions to the UAN Repertoire ... 18

5. DISCUSSION ... 18

6. ACKNOWLEDGMENTS ... 19

REFERENCES ... 19

APPENDIX A: UAN Symbols Used in the SigmaPlot- graphing task
Specification ... 25

APPENDIX B: Complete Modified Specification of the SigmaPlot™ Graphing
Task ... 27

iii

EXTENDING THE USER ACTION NOTATION (UAN) FOR SPECIFYING
INTERFACES WITH MULTIPLE INPUT DEVICES AND

PARALLEL PATH STRUCTURE

1. INTRODUCTION

Software developers, driven by competition and realizing the importance of the user interface,
are shifting toward more iterative design methods. This process allows for more user involvement in
the design process and "is necessary to arrive at a successful system" (Shneiderman 1987). When
usability is a primary concern, it is essential that the developers have a specification technique that can
clearly and accurately specify the user interface and the user actions necessary to navigate the
interface. Such specification methods are invaluable to the developer for identifying inconsistencies
in the interface and analyzing data collected in pilot studies on the usability of prototype
applications. Until recently notations suitable for such specification have fallen short. "Formal and
informal specification techniques have been applied to many aspects of software systems. However,
specification techniques have been less successful in describing the interface between the system and
the user" (Jacob 1986). There now exist many specification techniques capable of describing user
actions and the user interface. However, when describing complex tasks with many alternate ways of
performing the same action (e.g., via two or more input devices), these specifications become quite
confusing and fail to clearly represent this parallel structure.

The present work was inspired by an experiment conducted by Schmidt-Nielsen and
Ackerman (1993) investigating individual differences in user strategies during repetitive task
situations. A DOS application called SigmaPlotm was used as an environment in which to view these
differences and a moderately difficult graphing task was constructed as the experimental task. The
design of the study focused on the acquisition and incorporation of hot-key shortcuts into the user's
strategy. It was assumed that the hot-keys were more efficient than mouse actions in that the former
interaction technique typically combines a number of steps into a single keystroke. Therefore, if
users do, in fact, gravitate toward the most efficient strategy as they gain experience, it would be
expected that hot-keys would be used with greater frequency in subjects' later task trials. The data
seem to suggest that experienced users do not necessarily adopt the most efficient strategy; instead
the strategies fall into distinct categories, which are significantly correlated with performance on other
cognitive tasks. A follow-on of the study is currently being conducted at George Mason University
in conjunction with the Naval Research Laboratory.

The results of this study prompted several questions: Are all the hot-keys really more
efficient? Are some more efficient than others and therefore have a greater "pay off" associated with
their use? What interface design factors facilitate/hinder the acquisition and incorporation of hot-
keys into the user's strategy? How does the computer interface design interact with differences in
user strategies? In particular, are there identifiable patterns in user interface design that can be used
to predict in which applications these differences are likely to occur? These questions suggest the
need for an analytical specification method adequate to the purpose of representing sequence and
interrelation among all possible user inputs in a given application's user interface during the

Manuscript approved March 1, 1995

Dievendorf, Brock, and Jacob

performance of some task. A survey of existing formal specification methods was then conducted in
an attempt to find such a method. Although the primary factors of interest were more likely to be
addressed by techniques from the behavioral or user-centered domain, constructionalist or system-
oriented methods were also considered.

2. SURVEY OF FORMAL INTERFACE SPECIFICATION TECHNIQUES

2.1. Introduction

The user interface is arguably one of the most critical components of any software designed
for interactive use. A given user interface instantiates a set of methods and conventions by which a
user and a computer software package interactively communicate to accomplish work. What makes
the interface component so important is the issue of usability, that is, how easy or difficult a system is
to learn and use. "The principal problem in building computer systems used to be providing
sufficient processing power; now, it is more often providing a good user interface. However, the
designer trying to engineer a good user interface is handicapped without a clear and precise
technique for specifying such interfaces" (Jacob 1986). This section discusses different styles of
interface interaction and the different approaches taken in specifying the interface. Formal and semi-
formal techniques suitable for specifying the user interface of a computer system are surveyed and
the relevant literature is reviewed.

2.1.1 Sequential vs Asynchronous Interaction

New styles of interaction (e.g., direct manipulation of graphical objects and icons) have more
complex temporal behavior and are more difficult to represent than older styles of command
languages and menus, which were largely constrained to predefined sequences (Hartson and Gray
1990). These new interaction techniques are asynchronous in nature with "many tasks available to
the user at once, and sequencing within each task is independent of sequencing within other tasks"
(Hix and Hartson 1993). In sequential interaction the control moves predictably through the
dialogue and, hence, is easier to describe.

2.1.2 Constructional vs Behavioral Models

"Most representation techniques currently being used for interface software development
(e.g., state transition diagrams, event-based mechanisms, object orientation) are constructional-and
properly so. Any technique that can be thought of as describing interaction from the system
viewpoint is constructional" (Hix and Hartson 1993). Behavioral representation techniques attempt to
get away from software issues and into the issues that arise before software design, such as task
analysis, functional analysis, task allocation, and user modeling. "Consequently, behavioral
representation techniques and supporting tools tend to be user centered and task oriented" (Hix and
Hartson 1993).

Although a few constructional interface design models are capable of capturing some
temporal aspects of interface behavior, they are not capable of representing the temporal relationships
within concurrent and asynchronous interaction (Green 1986). Conversely, most behavioral models
completely fail to provide any method for specifying system actions. As each approach has its own
view of the interface, neither should be considered sufficient, eliminating the need for the other. In
fact, each supports a different domain, and if a full specification of an interface is desired, both
approaches should be taken.

2

Extending the User Action Notation

2.1.3 Qualities of a Good User Interface Specification

Jacob (1986) defines eight qualities that a specification technique for user-computer
interfaces should possess. (1) The specification should be easy to understand. Specifically, it should
be easier to understand, and possibly shorter, than the software that implements the interface. (2) The
specification should be precise. It should explicitly specify the behavior of the system for each
possible input. (3) The specification technique should be powerful. It should be able to express
complicated system behavior across a wide variety of interfaces in a compact and easy to understand
fashion. (4) The structure of the specification should be closely related to the user's mental model of
the system. The specification should represent the cognitive structure of the user interface rather than
the physical actions required or such implementation details as internal data or control structures. (5)
The specification should be easy to check for consistency. It should make apparent inconsistencies
and oversights in a user interface design and, in general, facilitate the evaluation of a user interface
from its specification. (6) The specification should emphasize the cognitive steps the user performs.
This emphasis is essential for using the specification to predict user performance. (7) The
specification should separate function from implementation. It should describe the behavior of a user
interface completely, precisely, and unambiguously but constrain the way in which it will be
implemented as little as possible. (8) Ideally a specification should be useful for simulating a user
interface. Given a specification, it should be possible to construct a prototype or mockup of the user
interface of a system rapidly and, perhaps (with an executable specifications, automatically.

2.2. Constructional Techniques

2.2.1. Backus-Naur Form (BNF)

Backus-Naur Form (BNF) is a technique based on production rule grammars and was
originally designed to specify static languages (Backus et al. 1960). The language is described by a
set of production rules, and from them, all possible valid inputs in the language can be produced.
"Each rule gives the definition for some nonterminal symbol. Wherever that symbol itself appears (in
the definition of some other symbol), it may be replaced by substituting the contents of its definition"
(Jacob 1986). This allows the definition of a single starting symbol to ultimately yield all legal
strings in the language. Although this method is capable of relating many design aspects of the user
interface the specifications are often awkward and cryptic, and even indecipherable to the lay reader.

Several investigators have modified the standard static language BNF to specify interactive
languages, such as user interfaces (e.g., Fenchel 1982; Lawson, Bertran, and Sanagustin 1978; Reisner
1981). Reisner's BNF specifies a nontrivial, real-world system but "describes only the syntax of the
input language; it gives no idea of what (if anything) the system will do as the user is entering
commands" (Jacob 1986). Jacob also notes that Reisner fails to overcome the traditional problems of
BNF-based techniques-representation of interactive prompting, error handling, and correction that
must occur at particular points in a dialogue. These are all awkward to specify, as controlling
precisely when a grammar rule is satisfied frequently requires introducing many artificial
intermediate constructs. In addition, the representation of optional "detours" (e.g., help functions) are
not supported and temporal aspects of a user-interface are difficult to capture.

2.2.1.1 Multiparty Grammars

Shneiderman (1982) introduces a new type of BNF-based grammar called Multiparty
Grammars. In this notation, each nonterminal symbol is associated with either user-input, the
computer, or mixed in a multiway conversation (Jacob 1986). "User-input and computer

3

Dievendorf, Brock, and Jacob

nonterminals represent user actions and computer responses, respectively. Mixed nonterminals
represent sequences in the human-computer dialogs" (Carr 1994).

The Multiparty Grammars notation is successful in many ways; it manages to move both sides
of the dialog into the syntactic domain, introduces a notation to represent visual attributes of display
characters, and allows for the specification of multiple windows on a display. In its present form
"Multiparty Grammars are good for modeling keyboard-based command language interactions but
are very awkward for direct-manipulation interfaces" (Carr 1994).

2.2.2. State Transition Diagrams

"State Transition Diagrams have long been used as a graphical representation of interaction
control flow in sequential interaction" (Hix and Hartson 1993) (also Wasserman 1985; Wasserman
and Shewmake 1985; Jacob 1986). In its basic form, a transition diagram is a series of nodes and
directed arcs. In this approach, the transition arcs represent state transitions based on user inputs, and
the nodes represent interface states or screens (Carr 1994). Arcs are generally associated with actions,
in which case "upon traversing the arc (executing the action), the terminal is then in the state
represented by the node at the end of the arc" (Wasserman and Shewmake 1985). "Because the nodes
of these diagrams usually do not represent interface feedback or screen appearance directly, the
content of a node-a representation of what happens within that state-is often described in some
other form, such as an interface representation language" (Hix and Hartson 1993). The same sort of
problem arises with descriptions of actions. "The actions could be specified informally with a
narrative, or more formally using a formal specification language, or assertions with preconditions
and postconditions" (Wasserman and Shewmake 1985).

Despite their advantages, conventional state transition diagrams have several drawbacks which
make them impractical for the specification of large, complex systems (Harel 1988; Wellner 1989).
(1) Conventional state diagrams are "flat." They provide no depth, hierarchy or modularity, and
therefore do not support top-down or bottom-up development. (2) Conventional state diagrams are
uneconomical when it comes to transitions. An event that causes the same transition from a large
number of states must be attached to each state separately. (3) Conventional state diagrams require
exponential growth in states as the system grows linearly because every possible state must be
explicitly represented. (4) Conventional state diagrams are inherently sequential and cannot easily
represent concurrent activities.

Wasserman and Shewmake (1985) propose the User Software Engineering (USE)
methodology, which extends the traditional state transition diagrams to include semantic content to
provide for the executable specification of a system. The USE methodology also allows for the
inclusion of variables into the notation, and it allows actions to "return a value, with branching to a
node or subconversation dependent on that value" (Wasserman and Shewmake 1985). The transition
arc concept was extended to: (1) handle buffered or unbuffered input, (2) handle extended keys on
the terminal (e.g., function keys and arrow keys), (3) support the immediate recognition of particular
keys (e.g., a function key or help key), (4) allow for the extension of the set of input string
terminator keys, (5) apply a time limit on waiting for user input, after which a transition is made, (6)
truncate user input to a fixed length, and (7) allow for a transition to be made with no input at all, just
to perform an action. "Thus the USE methodology extends the concept of a transition diagram to
handle situations that frequently arise in the construction of interactive information systems. As a
result, USE transition diagrams are highly specialized to the specification of interactive systems and
contain much more information than is available in classic state transition diagrams" (Wasserman and
Shewmake 1985).

4

Extending the User Action Notation

2.2.2.1 Concurrent State Diagrams

Jacob solved some of the combinatorial explosion problems of traditional state transition
diagrams with the introduction of Concurrent State Diagrams (1986a). This method proposes "a
mutually asynchronous set of state diagrams (that) represent the interface, offering the graphical
advantage of a diagrammatic approach but avoiding the complexity of a single large diagram" (Hix
and Hartson 1993). Multiple diagrams are active simultaneously, and control is transferred from one
to the other in a coroutine fashion. "Coroutines do not solve the transition complexity problem for
specifying some systems (notably those with context sensitive help)" (Carr 1994).

2.2.2.2 Executable Specification

Jacob (1983) describes a specification technique for user-computer interfaces that are
executed interpretively to provide a working prototype of the system. The technique uses state
transition diagrams to emphasize the time sequence aspects of the user interface and decomposes the
specification into three components. Jacob adopts Foley and Van Dam's (1982) three levels
representing "increasing amounts of specificity and detail and decreasing abstraction, from the
semantic level to the lexical level" (Jacob 1985). The semantic level describes the functions
performed by the system and tells what information is needed to perform each function and its result.
The syntactic level describes the sequence of inputs and outputs. For inputs, this means describing
the rules by which tokens in the language are formed into proper "sentences." The lexical level
"determines how input and output tokens are actually formed from the primitive hardware operations
(lexemes). It represents the binding of hardware actions to the hardware-independent tokens of the
input and output languages" (Jacob 1985). The syntactic specification is then refined from an
informal specification to a formal, executable one.

It is quite useful to be able to construct a prototype of the user interface directly from the
specification. "While many prospective users will find a formal specification of a proposed system
difficult to understand, they will have much less trouble evaluating a mockup system and identifying
deficiencies in its user interface, both through informal demonstrations and formal experiments"
(Jacob 1985). This technique has proven successful in specifying and constructing several
prototypes built in the Secure Military Message Systems project at the Naval Research Laboratory.

2.2.3 Statecharts

Statecharts (Henderson 1986) are graphical notations that extend conventional state transition
diagrams, attempting to preserve all of their benefits while overcoming their drawbacks (Wellner
1989). Harel has done much work on perfecting the use of statecharts as a specification method for
user interface dialogues (Harel 1987; 1988) and has come up with a method which provides for a
hierarchical representation that makes it easy to see at a glance how the interfaces are organized. The
three fundamental components of these statecharts are states, events, and actions with behaviors being
made up of Event-Action pairs (Wellner 1989).

Statecharts gave state diagrams the ability to represent two new kinds of states to represent the
concepts of grouping and concurrency. If several states have identical transitions triggered by the
same event, then those states can be grouped together in a single meta-state, and a single transition
can be specified from the group instead of several. "Meta-states are divided into two types: parallel or
AND-states and sequential or XOR-states. Meta-states enclosed within AND-states may execute in
parallel and fulfill the function of coroutines" (Carr 1994), whereas only one state inside of a XOR
meta-state can be active at one time.

5

Dievendorf, Brock, and Jacob

Statechart specifications represent all interactions with the outside world through events and
actions. Input is represented by events and output by actions. "Events can be generated by the I/O
drivers, interaction technique objects, the application software, or by the broadcast action" (Wellner
1989). Any state can have entry and exit actions. (The entry actions are initiated whenever the state
is entered, and the exit actions when it is exited.) Broadcast events are actions which generate an
event that appears the same as an externally generated event and are used to specify a user interface
where one part of the dialog effects another. Conditional actions check the value of conditional
variables or the active status of specific states to determine which action to execute. These actions
guard the entrance to specific states, imposing constraints on the dialog, and handle exceptions
(Wellner 1989).

Statecharts are an effective specification technique for communicating dialog designs and
modifications because they are easily understood, formal, and compact. The major drawback to
Statecharts is "as originally defined [they] do not incorporate data flow or abstraction" (Carr 1994).

2.2.3.1 Interface Representation Graphs (IRGs)

Interface Representation Graphs (IRGs), introduced by Rouff in 1991, extend the statechart to
represent dialog. IRGs maintain the traditional statechart form while introducing several new
extensions. "IRG nodes represent a physical or logical component of an interface as well as a state"
(Carr 1994). IRGs are capable of specifying data flow as well as control flow, and constraints are
supported. IRGs can also represent inheritance of interface objects, data flow, control flow, and
attributes. "Finally, to support UIMS (User Interface Management Systems) functionality, IRGs
permit specification of semantic feedback between the application and the user interface" (Carr
1994). IRGs provide several useful extensions to the traditional statechart and are used successfully
as the underlying representation technique in Rouff s Rapid Program Prototyper (RPP).

2.2.3.2 Interaction Object Graphs (IOG)

The Interaction Object Graph (IOG) is a new statechartlike method for specifying interaction
objects or widgets developed by Carr (1994). The IOG draws from IRGs for its data flow and
constraint specifications, UAN (discussed below) for its description language, and the traditional
statechart for its transition diagram execution model. Not only does the IOG provide for a more
condensed specification than traditional methods, it gives the reader a clear idea of both the object's
appearance and the dynamic changes in its appearance. This technique has proven quite successful at
clearly specifying simple interaction objects, but a complete specification of a complex widget
becomes quickly "muddled." Current efforts are focused on designing a tool that will allow for the
direct execution of IOGs.

2.2.4 Object-Oriented Approach

Object-oriented systems, such as those proposed by Sibert, Hurley, and Blesser (1988), fit
today's interaction styles well as "the behavior of interaction objects is naturally event driven and
asynchronous" (Hix and Hartson 1993). In such an environment, "the behavior of a certain element
may be predefined as an attribute of that element's property list. Only when it is necessary to modify
the default behavior of a particular object does it become necessary to explicitly specify a portion of
the user interface logic" (Wilson and Rosenberg 1988). This provides for a much more compact
specification than traditional approaches.

One of the major advantages of the object-oriented approach is that it provides a degree of
autonomy from the internal software structures, which make up the interface (Sibert, Hurley, and

6

Extending the User Action Notation 7

Blesser 1986). However, the object-oriented approach distributes the flow of control, which makes it
difficult to understand or trace the sequencing (Hix and Hartson 1993). -,

2.2.5 Event Handlers

One type of constructional representation technique, similar to object-oriented programming
and designed especially for asynchronous interaction, uses the concept of event handlers (e.g., Green
1985a). "With these, each user action or input is viewed by the system as an event and is sent to the
appropriate event handler" (Hix and Hartson 1993). "An event handler is a procedure that performs
a set of actions based on the name of the event it receives. These actions include passing output
tokens to the presentation component, passing input tokens to the application interface model,
performing some calculation, or generating new events" (Green 1985b). States are represented as the
collection of events processed by an event handler, and "the set of event handlers active (able to
receive events) at any one time defines the legal user actions at that point in the dialogue" (Green
1985). This model has proven quite effective and has been used in the Macintosh (Apple 1985;
Chernicoff 1985) and in many highly interactive systems (Green 1985a; Hill 1986).

2.2.6 Multilayered Method

Foley and Van Dam's (1982) method is a multileveled model of interaction that allows both
abstract and concrete details of interaction to be documented within the same scheme. The complete
specification consists of four levels: the conceptual design, the semantic design, the syntactic design,
and the lexical design. Each level is specified separately and has its own form.

"The conceptual design serves to outline the user's model of the application" (Foley and Van
Dam 1982) and is said to comprise four things: (1) the set of all types of objects in the system, (2) the
relationships between those types of objects, (3) the properties associated with the types of objects,
and (4) the operations that can be performed on the objects, the relationships between objects, or the
properties of objects. The semantic level of specification is concerned with the operations a user can
perform, and each operation is defined in a table that describes the parameters of the operation, the
system feedback, possible errors, and performance measures (Frohlich and Luff 1989). Foley,
McCormick, and Bleser (1984) suggest that the syntactic level of the interface be specified using two
notations, Finite State Diagrams and BNF notation. The lexical component is described in input
lexicon tables and, for output lexicon, data specifications and message specifications.

This multilayered method is quite comprehensive and produces unusually long specifications.
This method's specification of the semantic and syntactic levels of the interface is "clumsy" and
"verbose and might be written more economically using a formal notation such as first-order logic"
(Frohlich and Luff 1989). Despite these shortcomings, the method is quite effective and has potential
to facilitate the design and development cycle.

2.2.7 Interaction by Demonstration: PERIDOT

PERIDOT is "a rule-based design tool in which the designer demonstrates by example how he
wishes the interface to look and work" (Wilson and Rosenberg 1988). The system "learns" the
common behaviors and applies them to similar situations within the interface, eliminating the need for
describing all of the dialogue states. (Only the exceptions need be encoded.) PERIDOT introduces
the virtual mouse, which allows for the direct specification of the behavior the designer wants the
mouse to adopt when the interface is running. This approach, sometimes referred to as visual
programming, significantly expedites the creation of direct manipulation interfaces.

Dievendorf, Brock, and Jacob

"This is a novel and creative approach and is very suitable for producing rapid prototypes.
However, it produces only program code, with no behavioral representation of the interface that can
be analyzed" (Hix and Hartson 1993). Myers (1987) notes that "the designer's actions when
manipulating the tool can be ambiguous. This technique is also not well suited to describing highly
syntactic structures, such as how a textual input string should be parsed." "While specifying interface
behavior by example is not suited to all forms of user dialogue, it can enhance the dialogue design
process significantly, particularly when used in conjunction with other tools, such as a formal
grammar mechanism (Wilson and Rosenberg 1988).

2.2.8 User Interface Development Environment (UIDE)

The User Interface Development Environment (UIDE), introduced by Foley, Gibbs, Kim, and
Kovacevic (1988), allows alternative interfaces with the same basic functionality to be generated.
Designing an interface in UIDE involves "building a knowledge base consisting of objects, attributes,
actions, and pre- and post-conditions on actions" (Hix and Hartson 1993) that encode dynamic
behavior and are used to describe partial semantics of application actions. "These partial semantics
are used for many purposes, including selective enabling of menu items, (providing) partial
explanations of what an action does, providing context sensitive animated help, applying correctness-
preserving transformations to the interface, checking the completeness and consistency of the
interface, and dialogue sequencing" (Gieskens and Foley 1992). In 1992, Gieskens and Foley
extended the UIDE mechanism to include all interface objects, thus providing a much finer grain of
control over the development of the user-interface.

2.2.9 Graphical Control Specification Systems: Panther

A graphical interface specification tool for UNIX®-0based applications, called Panther, has
been designed by Helfman (1987). "Unlike similar systems, which focus on combining interaction
techniques, Panther allows the specification of low-level interactions by invoking user-selectable
subroutines for input-device transitions" (Helfman 1987). It is flexible enough to allow both experts
and novices to create, test, and modify configurations for application interfaces.

Panther contains its own window management system and, therefore, can run with no external
window support. A Panther interface is made up of hierarchically nested rectangular regions. Each
region can be used as a control device (e.g., buttons, knobs, and slider-bars), or it may be used to
display and manipulate application-related data. Each region is defined in terms of seven attributes:
name, coordinates, highlight style, draw flag (used to identify application-specific data that must be
redrawn frequently to ensure the accuracy of displayed data), parent name (identifies the region's
parent), draw routine, and selection routine (subroutines called when the region is selected). These
attributes are specified in a tabular notation, which is then stored as an ASCII file until compiled.

"Panther was initially used to edit objects in a keyframe animation system" (Weil and Helfman
1984) and "has since been used to specify the interfaces for several paint systems and an image
processing system" (Helfman 1987). The current Panther system uses textual tables as input;
however, certain region attributes such as coordinates would be easier to manipulate in a graphical
user interface that could change dynamically as it is specified. Helfman acknowledges this point and
mentions that research on a Graphical User Interface (GUI) Panther is underway.

8

Extending the User Action Notation

2.3. Behavioral Techniques

2.3.1 Goals Operators Methods and Selection Rules (GOMS)

"The GOMS model concept, originally introduced by Card, Moran, and Newell (1983), is one
of the most widely accepted analytical modeling concepts in the HCI community" (Gong and Kieras
1994). Recent efforts to refine the GOMS model have led to a notation system NGOMSL (Natural
GOMS Language), which allows "GOMS models to be written down with a high degree of precision,
but without the syntactic burden of ordinary formal languages and that is also easy to read rather
than cryptic and abbreviated" (Kieras 1988). Unlike traditional task analyses, which focus on the
construction of an action/object table, a GOMS task analysis describes in detail the specific method
for accomplishing the goals listed in the action/object table. Thus, a GOMS task analysis begins
where traditional task analysis leaves off (Kieras 1988).

The GOMS model describes the user's cognitive structure in terms of four components: "(1) a
set of Goals, (2) a set of Operators, (3) a set of Methods for achieving the goals, and (4) a set of
Selection rules for choosing among competing methods for goals" (Card et al. 1983). A goal is
something the user tries to accomplish, and a goal description is an action-object pair in the form
<verb-noun>. Goal lists are typically represented hierarchically with the accomplishment of a goal
usually requiring the completion of one or more subgoals. "Operators are elementary perceptual,
motor, or cognitive acts, whose execution is necessary to change any aspect of the user's mental state
or to affect the task environment" (Card et al. 1983). Operators, like goals, take the action-object
form, but a goal is something to be accomplished whereas an operator is simply executed. Methods
are sequences of goals and operators that describe a procedure for accomplishing a goal. Selection
rules are a set of if-then notations that are used to route control to the appropriate method to
accomplish the goal.

While the GOMS method currently only models error-free performance, Card et al. (1983)
suggest that the notation might eventually be extended to cover errors. When the Methods, Operators,
and Selection Rules are very large in number or unidentifiable, it is difficult to predict behavior from
the specification (Koubek et al. 1989). Nevertheless, it is quite effective in identifying usability
bottlenecks, providing guidance for design solutions, and producing useful quantitative predictions
for design alternatives. Recent studies have documented the model's validity and have demonstrated
that "the GOMS model method can and should have a role in the iterative cycle of software interface
design and evaluation" (Gong and Kieras 1994), (Nielsen and Phillips 1993).

2.3.2 Keystroke-Level Model

The Keystroke-Level Model (Card, Moran, and Newell 1980) is a Keystroke Level GOMS
analysis refined into a model of practical use. It is a system design tool intended for the purpose of
predicting one aspect of performance-the time it takes an expert user to perform a given task on a
given computer system. Although quite powerful, the Keystroke-Level Model has several restrictions:
"The user must be an expert; the task must be a routine unit task; the method must be specified in
detail; and the performance must be error-free" (Card et al. 1980). The authors note that these
factors severely limit the model's application but insist that this level of specificity is necessary to get a
valid model that accurately predicts the time taken to perform a task.

The method is simple. The interface is broken down into a series of small, cognitively
manageable, quasi-independent tasks that are referred to as unit tasks. The unit tasks are considered
to consist of two parts: the acquisition of the task and the execution of the task. The total time to
perform the given task is the sum of these two parts. "The Keystroke-Level Model asserts that the
execution part of a task can be described in terms of four different physical-motor operators: K
(keystroking), P (pointing), H (homing), and D (drawing), and one mental operator, M, by the user,

9

Dievendorf, Brock, and Jacob

plus a response operator, R, by the system" (Card et al. 1980). The task is written in terms of these
operators, each of which has a time value associated with it. "The evaluator then counts the number
of occurrences of each type of operation that appear, multiplies each total by [its] time constant, and
adds the components together" (Roberts 1988). This is then summed with the acquisition constant to
give the total time taken to complete the given task.

The Keystroke-Level Model, despite its limitations, has proven to be a useful tool to
developers. "A number of empirical studies have shown that the predictions of GOMS and the
Keystroke Model are reasonably accurate, and that sometimes one can even use the same time
parameters across applications" (Carroll and Olson 1988). Card, Moran, and Newell (1983)
demonstrated the consistency of their parameters across text processors, operating systems, and
graphics packages. An experiment by Olson and Nilsen (in press) showed that the basic parameters
applied to spreadsheet software as well.

2.3.3 Command Language Grammar (CLG)

Moran's Command Language Grammar (CLG) takes a top-down approach and uses a LISP-
like notation in a representational scheme designed to "describe the user's conceptual model of the
system" (1981). The CLG divides the system into components and levels, from an overall task
analysis to individual key presses. The three components Moran describes are a Conceptual
Component (abstract concepts and tasks), a Communication Component (command language and
conversational dialogue), and a Physical Component (the physical devices that the user sees and
comes in contact with).

Each of these components comprises two levels, with each level being a complete description
of the system at its level of abstraction and a refinement of the previous levels. The Conceptual
Component is made up of the task level, which describes the task domain addressed by the system,
and the semantic level, which describes the concepts represented by the system. The Communication
Component consists of the syntactic level, which describes the command-argument structure, and the
interaction level, which describes the dialogue structure. The Physical Component contains the
spatial layout level, which describes the arrangement of the input/output devices and the display
graphics, and the device level, which describes all the rest of the physical features.

The CLG seems to "presuppose a complete and explicit design before it can generate any
representation [and therefore] cannot support the design process, but rather must be supported by it"
(Carroll and Rosson 1985). Carroll and Rosson also point out that the method fails to take into
account user errors and, therefore, does not consider them a relevant factor in user-interface design or
in the psychological model of the user. Jacob notes that this multilayered format "results in an
unusually long and detailed specification" (1986b). In a study conducted by Sharatt (1987),
postgraduate students were asked to design and specify a relatively simple user-interface, using
Moran's CLG. The students had difficulty interpreting the methods described by Moran, and only
succeeded in generating lengthy specifications that required enormous amounts of effort. The
specifications themselves proved incomplete, lacking adequate descriptions of the physical
components, and there was no evidence suggesting that the evaluation metrics applied to the CLG
specifications had any psychological validity (Frohilich and Luff 1989).

2.3.4 Task-Action Grammar (TAG)

Task-Action Grammar, introduced by Payne and Green (1986) as a formal model of the
mental representation of task languages, attempts to model the user's knowledge by rewriting tasks
into action specifications. The semantic structure of the command language is then mapped onto
syntactic structure, thereby allowing the reader to make predictions on the learnability and usability

10

Extending the User Action Notation

of the interface. "The basic principle of TAG is that, through the apparatus of semantic features, task
tokens can denote well-defined categories of tasks" (Payne and Green 1986).

While a TAG description's format of breaking the interface into Simple Tasks, Task Features,

and Rule Schemas provides for a clear description of the individual tasks and highlights the

consistencies, it also produces quite a lengthy specification. Another of TAG's weaknesses is that its

"simple feature-based semantics cannot cope with all the intricacies of users' conceptual models, so

that important HCI considerations that are within the broad purview of the model (such as the

psychological impact of lexical names, or the perceived consistency of object oriented interfaces)

remain outside its scope" (Payne and Green 1989).

2.3.5 User Action Notation (UAN)

User Action Notation (UAN) is a behavioral representation technique developed at Virginia

Tech by Hartson, Siochi, and Hix (1990). UAN focuses on both the user and the interface,

describing the interaction between the two while performing a specified task. Although many

constructionalist approaches allow for specification at multiple levels of abstraction, among

behavioral approaches, UAN is the only representation technique surveyed that does not force a

detailed low-level description; rather it allows one to choose the desired level of abstraction. Another

strength of the UAN as a task description language is it's provision for specification of some aspects

of system behavior. However, as Carr points out, it still "concentrates heavily on describing user

actions and is not well adapted to describing software state" (1994).

The UAN's format is tabular in nature and divides the interface into asynchronous tasks that

are quasi-hierarchically related to one another (Hix and Hartson 1993). The notation is read from

top to bottom and left to right with sequence represented by rank, from top to bottom, and lateral

alignment representing associated behavior. As originally described, the notation is a table divided

into four columns: User Actions, Interface Feedback, Interface State, and Connection to Computation.

Hix and Hartson (1993) suggest that a UAN task description be complemented with screen pictures

and scenarios, interface state transition diagrams, and design rationale descriptions.

The UAN's major contributions are its compact-yet powerful-description language and its

ability to clearly and simply express large and complex interface designs at multiple levels of

abstraction. "The UAN, at present, is awkward at specifying system responses to unexpected user

actions and, due to its tabular format, does not clearly represent relationships between tasks" (Carr

1994). Nevertheless, "the User Action Notation provides a crucial articulation between the behavioral

domain and design and implementation in the constructional domain" (Hartson and Gray 1990).

3. THE USER ACTION NOTATION

None of the above surveyed techniques was entirely capable of capturing and clearly

representing interfaces with parallel path structure and showing the comparative efficiency of

functionally equivalent paths. Nevertheless, the UAN, because of its versatility, demonstrated the most

strength in this area and, furthermore, showed strong potential for use as an analytical specification

method. The remainder of this paper focuses on the authors' modification and analytical use of the

UAN for specifying interfaces with multiple input devices and parallel path structure.

As previously mentioned, UAN focuses on both the user and the interface, describing the

interaction between the two while performing a specified task. This provides an ideal environment in

which to study the interaction between user strategy and the computer interface design. The

specification's tabular format clearly represents the interaction between the user and the interface

I 1

Dievendorf, Brock, and Jacob

through its representation of associated behavior by lateral alignment across columns. The clear
representation of associated behavior is necessary to determine functional equivalence and the relative
efficiency of the functionally equivalent methods. As previously mentioned, the notation is read
from top to bottom and left to right with sequence represented by rank, from top to bottom. At the
articulatory level the table is divided into four columns: User Actions, Interface Feedback, Interface
State, and Connection to Computation (see Fig. 1).

Task: save file

USER INTERFACE INTERFACE CONNECTION TO
ACTIONS FEEDBACK STATE COMPUTATION

((-[file menu]
@menu-bar Mv V menu label-! elected= file menu file functions

file menu label! selected
isplay (file menu)

M A) new menu choice! default= new
OR function

(R: Alt-F VA) (elicits all feedback in this (accomplishes all interface (elicits all computations in
cell) state changes in this cell) this cell)

((-[saveJ@file menu
Mv save menu choice! selected= 0

selected= save
function

M) erase (file menu) selected= 0 pdated file' saved
display (saving
data message box)
saving finished:
erase (saving data

message box)

OR
((T) > [save menu save menu choice! selected= 0

choice]) selected= save
function

Enter VA) erase (file menu) selected= 0 pdated file' saved
OR display (saving

(S VA)) data message box)
saving finished:
erase (saving data

message box)

OR
(R: Ctrl-S vA) elicits all distinctfeedbac (accomplishes all distinct (accomplishes all distinct

in both cells of this column) interface state changes in computations in both cells
both cells of this column) of this column)

Fig. 1-UAN specification of the SigmaPlot save file task

12

Extending the User Action Notation

Figure 1 is a UAN description of the SigmaPlotTm save file task. The first cell of the
User Actions column in this specification is read move (-) to the file menu at the menu-bar ([f i le
menu] @menu-bar), press the mouse button down (Mv), then release the mouse button (MA); or
(OR) recall (R:) and depress the Alt and F keys simultaneously (R: Alt-F). The parentheses in the
notation serve as grouping mechanisms for sub-tasks. In this specification the action of moving to
the file menu at the menu-bar is associated with the Interface Feedback of all menu labels becoming
unhighlighted (menu label-!), the file menu label becoming highlighted (file menu
label!), and the file menu being displayed (display (file menu)); the Interface State of
the file menu being selected (selected= file menu); and the Connection to Computation of
file functions being selected (file functions selected). Similarly, the action of releasing
the mouse button is associated with the interface actions which are laterally aligned with the notation
(MA). It is understood that if the Alt-F method is used, then it is associated with all the interface
actions in that row. For a complete defined list of UAN symbols used in this specification, see
Appendix A.

4. MODIFICATIONS TO THE UAN

In general, the UAN's ability to represent user actions in a clear and concise format makes it
particularly useful as an iterative design and analysis tool. In what follows, modifications to the
format are proposed with the aim of increasing its analytical strengths and enhancing the method's
ability to specify complex interfaces with parallel path structure.

While the notation does provide for a clear description of the user's actions and a connection
to the corresponding system behavior when one input device is being used (such as a mouse), the
structure becomes confusing when, as in the previous example, there are many ways of completing
the same task and more than one input device is available (e.g., a keyboard and a mouse). The
problem lies in the representation of sequence and association. In the previous example, there are
multiple ways of completing specific actions, and this is represented by employing the symbol OR.
However, in order to maintain the lateral association and top to bottom sequencing, choice must be
represented at each step of the specified task. Figure 1 illustrates how confusing the specification of a
relatively simple task can become. The User Action specifications are difficult to follow, and it is
difficult to maintain the representation of associated behavior by lateral alignment. It becomes
necessary to maintain lateral association by repeating many of the system actions. This method
yields an unduly long and confusing specification. In fact, to provide a truly accurate specification,
all of the system responses should be repeated again aligned with the (R: Ctr1-S VA) notation.
In complex tasks containing many steps, this method becomes even more confusing to the reader of
the specification. Since one of UAN's major aims is task specification in a clear, easily understood
format (Hartson and Gray 1990), this cluttering of the specification is undesirable.

4.1 Dividing the User Actions Column

When a task within an application can be performed in more than one way (i.e., with more
than one input device), the specification can be made much more clear if the User Action column is
divided into separate columns, one for each input device (e.g., mouse and keyboard). If the User
Actions column in Fig. 1 is divided to accommodate separate input devices, then the notation allows
for concurrent specification of equivalent mouse and keyboard functions and becomes as follows
(see Fig. 2):

13

Dievendorf, Brock, and Jacob

TASK: save file |

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

- file
menu]@menu-barMv (R: Alt-F v^) V menu label-! selected= file menu file functions

file menu label! selected
display(file menu)

Ml new menu choice! default= new
function

- [save] ~fdle menu
Mv((of) > [save save menu choice! selected= 0

menu choice] selected= save
function

MA Enter vA) erase (file menu) selected= 0 updated file'
OR display (saving data saved

S V^)) message box)
OR saving finished:

erase (saving data
message box)

(R: Ctrl-S v^) (elicits all feedback in (accomplishes all (accomplishes all
both cells of this interface state changes computations in both

column) in both cells of this cells of this column)
I_____ column)

Fig. 2-UAN specification of the SigmaPlot save file task with User Actions column divided to accommodate
separate input devices

Notice that this specification maintains lateral alignment's representation of associated
behavior, even between input devices, and eliminates the need for excessive use of the UAN symbol
OR, making the specification much more clear and concise (with the exception of the (R: Ctrl-S)
hot-key specification, which is discussed later). The User Actions column is separated from the
Interface Actions columns by a double line, and the italicized Times font is used to denote terms that
are specific to the specified application and not to UAN (i.e., menu names, and dialogue box names).
These cosmetic changes are introduced solely for clarification. The table is still read from top to
bottom and left to right with association still represented by being on the same line. However, within
the User Actions column, the state of being on the same line represents functional equivalence.
Therefore, there exists an implied OR at the meeting of adjacent mouse and keyboard cells in the
User Actions column. Furthermore, every intersection of bold lines within the User Actions column
represents a point at which the user may shift input devices while keeping on the task, as seen in Fig.
3. With this division, the User Actions column becomes a matrix that provides a clear and concise
way of representing all the possible combinations of actions the user may employ to complete the
specified task. For example, the user may use all mouse commands, all key commands, or any
combination of the two.

14

Extending the User Action Notation

Fig. 3-Points at which the user may switch input devices

4.2 Hot-Key Specification

In some cases, there may be more than one way to complete a task using a particular input
device. In these situations, it is possible to further divide the specific input device column (e.g.,
mouse or keyboard) to accommodate these alternative methods. These divisions represent an implied
OR and are made by a thin line as they do not require a shift in input devices. Alternatives such as
these are typically hot-keys or other kinds of shortcuts. This method of specification makes the
benefit afforded by particular shortcut stand in relief.

Figure 4 schematically illustrates just such a situation. In this case, after completing action 1
or 1', the user may execute two mouse actions (2 and 3), two keyboard commands (2' and 3'), or use a
hot key (2"), which will accomplish both actions, maintain the same interface response, and move the
user to the same place within the application (4/4'). Note that the previously described ability of the
user to shift from one input device to the other at the intersections applies to both boxes in the
keyboard column. These actions, which cross cell boundaries, can only be initiated at the cell from
which they originate. The user may proceed from 1 to 2; shift from 1 to 2'; or use the specified hot-
key and shift from 1 to 2". The user who chose the hot-key command would then proceed to either
4 or 4' where the non-hot-key user would have to complete the action in either the cell denoted by 3
or 3'. This particular shortcut allows the user to execute two commands with one action.

TASK: I

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

2 1 2__ __ _

3 _ 3' _

4 F 4' _______fra _o specifyinghot-keys

Fig. 4-Modified UAN format for specifying hot-keys

USER ACTIONS

mouse keyboard

I,
V >1> "W

I

I

I

1 5

Dievendorf Brock, and Jacob

The SigmaPlot save file task illustrates a case where a second division within the
keyboard column would be warranted. Once this modification is applied to the specification, it serves
to further clarify the description. The new specification (Fig. 5) now illustrates the fact that
employing the Ctrl-S shortcut is functionally equivalent to clicking on the file menu label and then
on the save label in that menu. The Ctrl-S action is also equivalent to depressing the Alt and F keys
simultaneously to display the File menu then selecting the Save function by depressing the S key or
by navigating to the save label with the arrow keys and depressing Enter.

TASK: save file

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

-[file

menu]@menu-barMv R: Alt-F V menu label-! selected= file menu file functions
VI file menu label! selected

display(fle menu)

new menu choice! default= new
M^ l function

R: Ctrl-
'[save]@file menu v^

Mv((t) > save menu choice! selected= 0

[save selected= save
menu function

choice]

Ml nter v) erase (file menu) selected= 0 updated file'
OR display (saving data saved

(S v^) message box)
saving finished:
erase (saving data

- message box)

Fig. 5-UAN specification of the SigmaPlot save file task with the hot-key modification

4.3 Individual Input Actions

While this specification clearly represents all seven ways of completing the save file task,
the specification can yield even more information if each cell in the User Actions column is divided
into individual input actions, which we define as user actions that elicit a system response. These
divisions are marked by thin lines and should not be confused with the thick divisions that divide
subtasks and input devices. By dividing the cells this way, each division can be considered relatively
equivalent, and the specification then yields information as to the relative efficiency in terms of user
input actions required by the different methods to complete the specified task.

In Fig. 6, the specification has been divided into individual input actions. The action of
moving to the file menu and depressing the mouse is equivalent to the action of releasing the mouse
button, depressing the Alt and F keys, depressing the Enter key, etc. Moving the mouse cursor to the
object of interest is not considered an individual input action, as there is no interface response until
the button is depressed. (It is possible to break the cells down to individual user actions, in which case
the act of moving the mouse cursor would warrant a division, and a similar representation would be

16

Extending the User Action Notation

necessary in the keyboard column to represent the user's hands moving to the key(s) of interest.)
Navigating a menu or dialogue box with arrow keys or the Tab key is considered one action, as the
user need only locate the key(s) once and then it(they) can be pressed rapidly and used as a
navigating device. In some cases, the user may be required to type in a character string (i.e., a file
name). In these cases the input action of typing the string may have to be weighted more heavily
than the other actions in the specification.

TASK: save file _

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

- file
menu) CImenu-barMv V menu label-! selected= file menu file functions

R: Alt-F file menu label! selected

VI display(file menu)

Dr new menu choice! default= new
function

-[save] (Ifile menu R: Ctrl-
Mv VI save menu choice! selected= 0

> selected= save

[save function
menu

hoice S

Ml Enter erase (file menu) selected= 0 updated file'
display (saving data saved

VI message box)

saving finished:
erase (saving data
message box)

Fig. 6-UAN specification of the SigmaPlot save file task with individual input actions divisions

This modification makes all the possible paths through the task stand in relief and allows the
reader of the specification to evaluate the different methods of completing a task in terms of how
many individual input actions are necessary for its completion. In the previous example, the most
efficient method of completing the save file task is the one input action of depressing the Ctrl
and S keys simultaneously. The all-mouse method requires four input actions and is, therefore,
arguably less efficient.

When making these types of comparisons, there are several factors that must be considered.
In the save file task, the Ctrl-S method is the most efficient in terms of input actions, assuming
that the user recalls the command. If not, the method may actually be less efficient, as the user may
need to look up the command or try several different commands before finding the correct one. We
have also already noted that mouse movement has a cost but is not an input action by this paper's
definition. Another consideration to take into account when evaluating the efficiency of different
methods is the cost associated with shifting between input devices. Take, for example, the following
scenario: the user moves the mouse to the file menu and "clicks" on it, then switches to the keyboard

17

Dievendorf Brock, and Jacob

and depresses the S key. Here the "cost" of the shift could be considered to be the equivalent of
another input action. Thus the sequence described in the this scenario is equivalent to four "input"
actions-one for moving to the file menu and depressing the mouse button, one for releasing the
mouse button, one for switching input devices, and one for pressing the S key. This description more
accurately reflects the true cost of the user's path of actions. Nevertheless, there are also many simple
keyboard commands that the practiced user might enact with a minimum of cost in movement,
expending only the cost of a shift in focus.

These modifications not only make the UAN specification of interfaces with multiple input
devices much more clear, they allow the reader of the specification to make meaningful comparisons
of alternative methods for completing a specified task. For a complete specification of the
SigmaPlotm graphing task in the modified UAN format, see Appendix B.

4.4 Additions to the UAN Repertoire

Aside from these structural modifications, a few new symbols to implement the UAN
repertoire follow:

-, , Tab These symbols are used in the User Actions column to specify key
commands used to navigate dialogue boxes and menus. They are
quite frequently used in this context: (OR (1T1, +- -4, Tab) * >
[menu' I), which reads as use the up, down, left, right arrows or the
Tab keys zero or more times to move to the specified menu.

> This symbol is defined as "to" (as in the previous example).

@ This symbol specifies location

R The boldfaced R is used to denote recall of an obscure command by
the user, such as the Ctrl-F hot-keys. Such commands are referred to
as obscure, as they have no cues associated with them. (There is no
cue to the user that Ctrl-F1 initiates the select graph function.)

R The nonboldface R is used to refer to the recall of a key command
for which the user is prompted (i.e., an intuitive command such as
using Alt-F to access the File menu).

default= This notation is used in the Interface State column to denote the
default value/field of the specified menu, or dialogue box.

italicized Times The italicized Times font (as opposed to the UAN-standard courier
font) is used for terms specific to the application and not UAN, such
as menu names, dialogue box names, and function names.

The shaded cell represents an empty cell. This is used in cases where
there is no equivalent to the action represented in the adjacent cell
and, therefore, the user must complete the action in the unshaded cell.

5. DISCUSSION

The modifications proposed in this paper eliminate the need for multiple OR notations and
grouping mechanisms necessary for representing optionality thereby maintaining the representation

1 8

The modifications proposed in this paper eliminate the need for multiple OR notations and
grouping mechanisms necessary for representing optionality thereby maintaining the representation
of associated behavior through lateral alignment and reducing the "clutter" of the User Actions
column. The concept of functional equivalence between input actions and between subtasks is
introduced and clearly represented by adjacency within the User Actions column. The matrix design
of the User Actions column illustrates exactly where in the task the user may shift input devices while
keeping on task by using intersecting bold lines to divide the cells and the input device columns.
Finally, by dividing the User Actions into individual input actions, the notation yields a clear
representation of all the possible paths through the task and allows the analyst to compare these
methods in terms of the number of these actions necessary for completion.

The issues of comparative efficiency of user strategies brought to light by the modifications
to the UAN presented here suggest that it would be possible next to design and write a program that
will take the modified UAN specification as input and, from that, generate a list of all possible paths
through the task. Furthermore, predictions of path completion times could be computed. This could
be achieved by mapping each component action to a performance time value. As an example, times
for keyboard and mouse actions could be determined, respectively, by using the values suggested by
the Keystroke Level Model of human performance and Fitt's Law as applied to mouse movement
(Card, Moran, and Newell 1984). Time values would also need to be included for any cognitive
operators used in the specification as well as the system response times. The program could also be
designed to accept human data on the specified task as input and, from that, compute frequencies
associated with each path. This sort of information would clearly be useful for HCI research
purposes such as identifying interface inconsistencies and analyzing data collected in usability
studies.

6. ACKNOWLEDGMENTS

The authors thank Ben Shneiderman for sponsoring this work at the University of Maryland
at College Park; Tucker Maney for the use of the PC without which this work would not have been
possible.; and Astrid Schmidt-Nielsen, Debbie Hix, Bill Lawless, Dave Carr, Lisa Achille, Manuel
Perez, and Helen Gigley for their insightful comments and suggestions; The User Action Notation
was created and formalized at Virginia Tech by Hartson, Siochi, and Hix.

REFERENCES

Apple Computer, Inside Macintosh (Addison-Wesley, Reading, MA, 1985).

J. W. Backus, et al., "Report on the Algorithmic Language ALGOL 60," Communications of the
ACM 3, 299-314 (1960).

S. K. Card, T. P. Moran, and A. Newell, "The Keystroke Level Model for User Performance Time
with Interactive Systems," Communications of the ACM 23, 396-410 (1980).

S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer Interaction
(Lawrence Erlbaum Associates, Hillsdale, NJ, 1983).

D. Carr, "Specification of Interaction Objects," Proceedings of the ACM CHI'94 Celebrating
Independence 1994, pp. 372-378.

Extending the User Action Notation 19

Dievendorf, Brock, and Jacob

J. M. Carroll and M. B. Rosson, "Usability Specifications as a Tool in Iterative Development," in
Advances in Human Computer Interaction, H. R. Hartson, ed. (Ablex Publishing, Norwood,
NJ, 1985) pp. 1-28.

S. Chernicoff, Macintosh Revealed (Hayden Book Company, Hasbrouck Heights, NJ, 1985).

R. S. Fenchel, "An Integral Approach to User Assistance," ACM SIGSOC Bulletin 13, 98-104 (1982).

J. Foley, C. Gibbs, W. Kim, and S. Kovacevic, "A Knowledge-Based User Interface Management
System," Proceedings of CHI Conference on Human Factors in Computing Systems, New
York: ACM, 1988, pp. 67-72.

J. Foley, K. McCormick, and T. Bleser, "Documenting the Design of User-Computer Interfaces,"
Technical Report, Computer Graphics Consultants, Inc., Washington, DC (1984).

J. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics (Prentice-Hall,
Englewood Cliffs, NJ, 1982).

D. M. Frohlich and P. Luff, "Some Lessons from an Exercise in Specification," Human Computer
Interaction 4, 121-147 (1989).

D. F. Gieskens and J. D. Foley, "Controlling User Interfaces Objects Through Pre- and Post-
Conditions," Proceedings of ACM CHI'92 Conference on Human Factors in Computing
Systems, 1992, pp. 189-194.

R. Gong and D. Kieras, "A Validation of the GOMS Model Methodology in the Development
of a Specialized, Commercial Software Application," Proceedings of the ACM CHI'94
Celebrating Independence, 1994, pp. 351-357.

M. Green, "The University of Alberta User Interface Management System," Computer Graphics
19(3), 205-213 (1985a).

M. Green, "Report on Dialogue Specification Tools," in User Interface Management Systems, G. E.
Pfaff ed. (Springer-Verlag, Berlin, 1985b) pp. 10-14.

M. Green, "Design Notations and User Interface Management Systems," in User Interface
Management Systems, G. E. Pfaff ed. (Springer-Verlag, Berlin, 1985c) pp. 89-107.

M. Green, "A Survey of Three Dialogue Models," ACM Transactions on Graphics 5(3),
244-275 (1986).

D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Scientific Computer
Programming 8(3), 231-274 (1987).

D. Harel, "On Visual Formalisms," Communications of the ACM 31 (5), 514-530 (1988).

H. R. Hartson and P. Gray, "Temporal Aspects of Tasks in the User Action Notation," Human
Computer Interaction 7, 1-45 (1990).

20

£AWFaLutFg grt LJsI tIugufl IVQlllfl LI CZ

H. R. Hartson, A. C. Siochi, and D. Hix, "The UAN: A User-Oriented Representation for Direct
Manipulation User Interfaces," ACM Transactions on Information Systems 8(3), 181-203
(1990).

J. I. Helfman, "Panther: A Specification System for Graphical Controls," Proceedings of ACM
CHI+GI '87 Conference on Human Factors in Computing Systems and Graphics Interface,
1987, pp. 279-284.

R. D. Hill, "Supporting Concurrency, Communication, and Synchronization in Human-
Computer Interaction-The Sassafras UIMS," ACM Transactions on Graphics 5, 179-210
(1986).

D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through Product and
Process (John Wiley and Sons, New York, 1993).

R. J. K Jacob, "Executable Specifications for a Human-Computer Interface," Proceedings of CHI'83,
1983, pp. 28-34.

R. J. K. Jacob, "An Executable Specification Technique for Describing Human-Computer
Interaction," in Advances in Human Computer Interaction, H. R. Hartson, ed. (Ablex,
Norwood, NJ, 1985), pp. 211-242.

R. J. K. Jacob, "A Specification Language for Direct-Manipulation User Interfaces," ACM
Transactions on Graphics 5(4), 283-317 (1986a).

R. J. K. Jacob, "Survey and Examples of Specification Techniques for User-Computer Interfaces,"
NRL Report 8948, April 1986b.

D. E. Kieras, "Towards a Practical GOMS Model Methodology for User Interface Design," in
Handbook of Human-Computer Interaction, M. Helander, ed. (Elsevier Science Publishers
B. V., Amsterdam, North-Holland, 1988).

R. J. Koubek, G. Salvendy, H. E. Dunsmore, and W. K. LeBold, "Cognitive Issues in the Process
of Software Development: Review and Reappraisal," International Journal of Man-Machine
Studies 30, 171-191 (1989).

H. W. Lawson Jr., M. Bertran,and J. Sanagustin, "The Formal Definition of Man/Machine
Communication," Software-Practice and Experience 8, 51-58 (1978).

T. Moran, "The Command Language Grammar: A Representation for the User Interface of
Interactive Computer Systems," International Journal of Man-Machine Studies 15, 3-50
(1981).

B. A. Myers, "Creating Dynamic Interaction Techniques by Demonstration," Proceedings of CHI'87,
1987, pp. 271-278.

B. A. Myer and W. Buxton, "Creating Highly Interactive and Graphical User Interfaces by
Demonstration," Proceedings of the ACM SIGGRAPH '86, 1986, pp. 249-258.

['at ~ I- - a d a ry_ A-,:-'-- a It I

Dievendorf, Brock, and Jacob

J. Nielsen and V. L. Phillips, "Estimating the Relative Usability of Two Interfaces: Heuristic, Formal
and Empirical Methods Compared," Proceedings of INTERCHI '93, New York: ACM, 1993,
pp. 214-221.

J. Reitman Olson and E. Nilsen, "Cognitive Analysis of People's Use of Spreadsheet Software,"
Human-Computer Interaction (in press).

S. J. Payne and T. R. G. Green, "Task-Action Grammars: A Model of the Mental Representation
of Task Languages," Human Computer Interaction 2, 93-133 (1986).

S. J. Payne and T. R. G. Green, "The Structure of Command Languages: An Experiment on Task-
Action Grammars," International Journal of Man-Machine Studies 30, 213-234 (1989).

P. Reisner, "Formal Grammar and Human Factors Design of an Interactive Graphics System,"
IEEE Transactions on Software Engineering 7, 229-240 (1981).

T. L. Roberts, "Text Editors," in Handbook of Human-Computer Interaction, M. Helander, ed.
(Elsevier Science Publishers B. V., Amsterdam, North-Holland, 1988).

C. Rouff, Specification and Rapid Prototyping of User Interfaces, Ph.D. thesis, University of
Southern California, 1991.

A. Schmidt-Nielsen and P. L. Ackerman, "Acquiring Computer Skills: Individual Differences in
Style and Ability," Poster presented at the annual meeting of the Human Factors and
Ergonomics Association, Seattle, WA, 1993.

B. D. Sharratt, "Top-Down Interactive Systems Design: Some Lessons Learnt from Using the
Command Language Grammar," Proceedings of the INTERACT '87 Conference on Human
Computer Interaction, Amsterdam, The Netherlands: North Holland, 1987, pp. 395-399.

B. Shneiderman, "Multiparty Grammars and Related Features for Defining Interactive Systems,"
IEEE Transactions on Systems, Man, and Cybernetics 12,(2), 148-154 (1982).

B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer
Interaction (Addison-Wesley, Reading, MA., 1987).

J. L. Sibert, W. D. Hurley, and T. W. Blesser, "An Object-Oriented User Interface Management
System," Proceedings of the ACM SIGGRAPH'86, 1986, pp. 259-268.

J. L. Sibert, W. D. Hurley, and T. W. Blesser, " Design and Implementation of an Object-Oriented
User Interface Management System," in Advances in Human Computer Interaction, Vol. 2,
H. R. Hartson, ed. (Ablex, Norwood, NJ, 1988), pp. 175-213.

A. I. Wasserman, "Extending State Transition Diagrams for the Specification of Human-
Computer Interaction," IEEE Transactions on Software Engineering 11,(8), 699-713 (1985).

A. I. Wasserman and D. T. Shewmake, "The Role of Prototypes in the User Software Engineering
(USE) Methodology," in Advances in Human Computer Interaction, H. R. Hartson, ed.
(Ablex, Norwood, NJ, 1985), pp. 191-209.

22

Extending the User Action Notation 23

G. Weil, and J. Helfman, "Specification for Animation Using Keyframes (SPANKEY)," AT&T
Bell Laboratories internal memorandum, November 30, 1984.

P. D. Wellner, "Statemaster: A UIMS Based on Statecharts for Prototyping and Target
Implementation," Proceedings of CHI'89, 1989, pp. 177-182.

J. Wilson and D. Rosenberg, "Rapid Prototyping for User Interface Design," in Handbook of
Human-Computer Interaction, M. Helander, ed. (Elsevier Science Publishers B. V.,
Amsterdam, North-Holland, 1988).

APPENDIX A

UAN SYMBOLS USED IN THE SigmaPlot~" graphing task
SPECIFICATION

UAN SYMBOLS FOR THE USER ACTIONS COLUMN

What is Represented

Cursor movement

Object context

Cursor movement

Switch operation

Switch operation

String value

Grouping

Sequence

Repetition
Choice

Specific object value

t Keyboard navigation

T T ANT iRltflJLC

[XI

V

A

K (xyz)

()

AB

An

I, OR

xI

T1s, +--, Tab

t Location

t Location

t Recall

t Recall

t Null cell

t Specific terms

R

R

t

Ital. Times

move the cursor

the context of object X, the "handle" by which X is
manipulated

move the cursor into the context of object X

depress

release

enter value for variable xyz via keyboard

grouping mechanism

tasks A and B are performed in order left to right, or
top to bottom
task A is performed exactly n times

choice of tasks (used to show alternative ways to
perform a task)

used to denote a specific object x as opposed to any x.

use the arrow or Tab keys to navigate the dialogue
box, menu, or field
specifies location

"to", in keyboard navigation the object context which
follows this symbol is the destination

recall of a cued key command

recall of an uncued key command

used in cases where there is no equivalent to the action
represented in the adjacent cell

The italicized Times font is used denote terms specific
to the application not UAN (e.g., menu names).

t: The dagger denotes new UAN symbols suggested in this paper.

25

%-J C" 14 �J V JLJLJLU a - - - -
Ma.nninsy

UAN SYMBOLS FOR THE INTERFACE COLUMNS

What is Represented UAN Symbols Meaning

Highlight

Unhighlight

Highlight

Display

Erase

Redisplay

For all

Repetition

t Default

t Specific terms

-I!

I I

display (X)
erase (X)
redisplay(X)
V

default=

Ital.. Times

highlight object

unhighlight object

same as !, but use a different highlight

display object X

erase object X

redisplay object X

for all (e.g., Vicons)
task A is performed zero or more times

(used in the Interface State column) to denote the
default value/field of the specified menu, or dialogue
box

The italicized Times font is used denote terms specific
to the application not UAN (e.g., menu names).

t: The dagger denotes new UAN symbols suggested in this paper.

26 Dievendorf, Brock, and Jacob

APPENDIX B

COMPLETE MODIFIED SPECIFICATION OF THE
SigmaPlot= graphing task

The following pages contain the complete UAN specification of the Sigma Plot=
graphing task in which the user plots four graphs on a page and saves the page to a file. The
first table entitled Sigma Plotsx graphing taskis the task-level description. The actions
specified in the User Actions column of this table are macros which are defined at the articulatory
level in the pages that follow the task description.

TASK: SigmaPlot~" graphing task

USER ACTIONS INTERFACE STATE CONNECTION TO COMPUTATION

(select graph to plot w/o selected= file' & graph' graph' in file' selected to
using F-keys plot

select graph to plot by
clicking graph

select graph to plot using
Ctrl-Fl

select plot w/o using F-keys selected= file' & graph' & plot' selected to plot on
plot' graph' in file'

select plot using Shift F-l

pick data to plot selected= file' & graph' & data from column' plotted as
plot' & column' plot' on graph' in file'

column' plotted on graph':
selected= 0

selected= file' & graph'

select plot w/o using F-keys selected= file' & graph' & plot' selected to plot on
graph' in file'

select plot using Shift F-1 plot'

pick data to plot)4 selected= file' & graph' & data from column' plotted as

plot' & column' plot' on graph' in file'

column' plotted on graph':
selected= 0

selected= file' & graph'

selected= 0

save file selected= 0 updated file' saved

open file selected= file' file' selected to edit

open file by typing in name I I

27

Dievendorf, Brock and Jacob

TASK: select graph to plot w/o using F-keys

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

- [graph menu]@
menu-barMv R: Alt-G v^ Vmenu label-! selected= graph graph functions

graph menu label! menu selected
display (graph

menu)

Ml select graph menu default= select
choice! graph function

- [select graph] Ggraph
menu Mv (fl) > select graph menu selected= graph selectgraph function

[select choice! menu & select graph selected
graph display (select grap sub-menu
menu S v^ sub-menu)

choice]

Ml Enter v^ (selected graph)! efault= select graph
function &

l__ ___ ___ ___ ________(selected graph)

- [graph ']gselect
graph sub-menu Mv (hi) > V graph- ! graph'! default= 0

[graph'] K(graph default= graph'

#') v^
bM Enter v' erase (selectgraph selected= 0 graph' in file'

sub-menu) selected= file'I & selected to plot
erase (graph menu) graph,

ASK: select graph to plot by clicking graph l
h~~~~~~~~~fI

USER ACTIONS

mouse

- [graph']

INTERFACE

FEEDBACK

INTERFACE

STATE

CONNECTION TO

COMPUTATIONI I

V graph-! graph ' ! selected= file' & graph ' in file '
______ ~~~graph' I selected to plotI

28

Extending the User Action Notation 29

TASK: select graph to plot using Ctrl-Fl

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

R: Ctrl-Fl v^ display (select selected= select select graph
graph dialogue box) graph function function selected
graphs available box! default= graphs
(selected graph)! available box

default= (selected
________________ graph)

Enter v^ G v^ graphs available
box!!

(selected graph)!!

- [graph name'] @
graphs available box

Mv(f) > [graph V graph-!

name'] graph ' !!

Ml Enter v' graphs available default= 0
box-! default= graph'

graph' !

- [OK box] select
graph dialogue boxMv -+,Tab) OR vOKbox!

-4, Tab) * V
> [OK Ov

_____ _____ ____ box]

Ml Enter v' erase (select selected= 0 graph in file'
graphdialogue box) selected= file' & selected to plot

_graph I

Dievendorf, Brock, and Jacob

TASK: select plot W/o using F-keys

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

- [plot menu
]@menu-bar Mv R: Alt-P vA V menu label-! selected= plot menu plot functions

plot menu label! selected
display (plot menu

Ml select plot menu default= select
choice! plot function

- [select plot]
Gplotmenu Mv (14) > V menu choice-! selected= plot menu select plot function

[select select plot menu & select plot sub- selected
plot menu choice! menu
choice] S vI display (select plot

sub-menu)

ml Enter vA (selected sub-menu default= select
choice)! graph function &

(selected plot)

- [plot'] Bselect
plot sub-menu Mv (l) *> V plot-! plot' ! default= 0

[plot'] K(plot default= plot'

#') vA

Ml Enter vA erase (selectplot selected= 0 plot' selected to
sub-menu) selected= file' & plot on graph ' in

erase (plot menu) graph & plotfile'

30

Extending the User Action Notation

ITASK: select plot using Shift-Fl

I USER ACTIONS

I I keyboard

- [plot'] plots
available box Mv

INTERFACE

FEEDBACK

T INTERFACE

STATE
.I

CONNECTION TO

COMPUTATION

R: Shift-Fl v^ display (select selected= select select plot
plotdialogue box) plot function function selected
plots available box! default= (selected
(selected plot)! plot)

Enter v^

(fl)* >

[plot']

Enter v'

P v^

K(lst
letter of
plot') v

plots available
box!!

(selected plot)!!

V plot-!
plot' ! !

plots available
box-!
Plot' !

default= 0
default= plot'

- [OK box] fselect
plot dialogue box

Mv OR(, OK box!

-4,Tab) O v^
> [OK
box]

Ml Enter v' erase (select plot selected= 0 plot' selected to
dialogue box selected= file' & plot on graph' in

graph ' & plot' file '

31

Dievendorf, Brock, and Jacob

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

-[plot menu]I@menu-
barMv R: Alt-P Vmenu label-! selected= plot menu plot functions

v^ plot menu label! selected
display [plot menu]

Ml select plot default= select
menu choice! plot function

R: Shift-
- [pick data to F3 VA

plot] @plot menu Mv ()Vmenu choice-! selected= plot menu pick data to plot

> pick data to plot menu & pick data to plot function selected
[pick P choice! function

data to V
______ _____ _____ plot]

MA Enter display [pickdata to default= select
vA plot dialogue box] plot function &

pairwise XY box! pairwise XY box

-[worksheet box]
Bpick data to plot

dialogue box Mv OR(T1,+- V box-! worksheet

-4,Tab) box!

[worksheet W vA
box]

Ml Enter VA erase (pickdatato default= 0
plot dialogue box) default= (selected
erase (graph page) column)

display (worksheet)
(selected column)!

- [column ' I Mv

Ml

(v * 4)> [column']
VI _

Enter vA

V column- !
column ' !

display (column
label)

default= 0
default= column'

selected= 0
selected= file' &
graph ' & plot ' &

column'

column' selected
for plot'

Escape V column' (-! selected= 0 data from columno
erase (worksheet) slotted as plot' on
redisplay (graph graph' in file'I

page)I
plot column ' >

graph II I

32

T A �q TZ' e-nirle A&tA tn nInt-

I

Extending the User Action Notation

TASK: save file

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

-[file menu]@menu-
bar Mv R: Alt-F vA V menu label-! selected= file menu file functions

file menu label! selected
display (file menu)

Ml new menu choice! default= new
_ I ~~~~~~~~~~~~~function

-[save] Jfile menu R:
Mv(f) Ctrl- save menu choice! selected= 0

> S VI selected= save
[save function
menu
hoice s vA

MA Enter erase (file menu) selected= 0 updated file'
VA display (saving data saved

message box)
saving finished:

erase
(saving data message

_______________ ~~ ~~box)__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

33

34 Dievendorf, Brock, and Jacob

FASK: open file

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION.- -
-[file menu] Qmenu-

bar Mv Alt-F VA Vmenu label-! selected= file menu file functions
file menu label! selected

_display (file menu)
new menu choice! default= newMl function

-[openJ@file menu (1) * R: F2
Mv >[open VA Vmenu choice-! selected= open openfile function

menu open menu choice! function selected
choice

] OV
Ml Enter erase (file menu) default= path box

VA erase (graph page)
display (openfile
dialogue box)

path box!!

Enter VA path box!

- [files
box]

Bopen file
dialogue

box Mv n[file OR'(T, V box-! files box! *default= files box
n~ame'] --4,Tab)
Bfilles

box~open > [files
box]

file
Ml dialogue Enter VA files box!! selected= files

box Mv (top file name)! box
default=(top file)

-[file
name']

bfxles (y)* > [file Vfile name-! l
name' filename default= file'

Ml Enter VA files box!
- - file name _ _

-[OK box] Oopen
file dialogue box

Mv OR(la+- OK box!

-4, Tab) *
> [OK O VA

box]

Ml Enter VA erase (openfile selected= 0 file' selected to
dialogue box) selected= file' edit

redisplay (graph
page) display

(file I)

lI

I

Extending the User Action Notation

TASK: open file by typing in name

USER ACTIONS INTERFACE INTERFACE CONNECTION TO

mouse keyboard FEEDBACK STATE COMPUTATION

- [file menu] menu-
bar Mv R: Alt-F vA V menu label-! selected= file file functions

file menu label! menu selected
display (file menu)

Ml new menu choice! default= new
function

-[openJ@file menu (by)* R: F2
Mv >[open VA V menu choice-! selected= open open graph file

menu open menu choice! function function selected
hoice

Ml Enter erase (file menu) default= path box
VA erase (graph page)

display (openfile
dialogue box)

path box!! I

K(file name ') display= (file
name)

-[OK box]@open
file dialogue box Mv OK box!

M^ Enter vA erase (openfile selected= 0 file' selected to
dialogue box) selected= file' edit

redisplay (graph
page)

_____ ____ _____ _ __ _____ ____ ____ display (file ') _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

rob

t.1

rr

35

